Future of short pulse x-ray studies for

Warm Dense Matter and Plasma-Related Research

P. Audebert[∞], R. Cauble[§], R. Falcone¹, J.-C. Gauthier[∞], P. Heimann², S. Johnson¹, K. Kulander[§], O. Landen[§], R. Lee[§], C. Lewis^{*}, A. Lindenberg¹, S. Moon[§], C. Mossé^a, A. Ng[•], D. Riley^{*}, S. Rose^a, and J. Wark[¶]

[∞]Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique Palaiseau, France

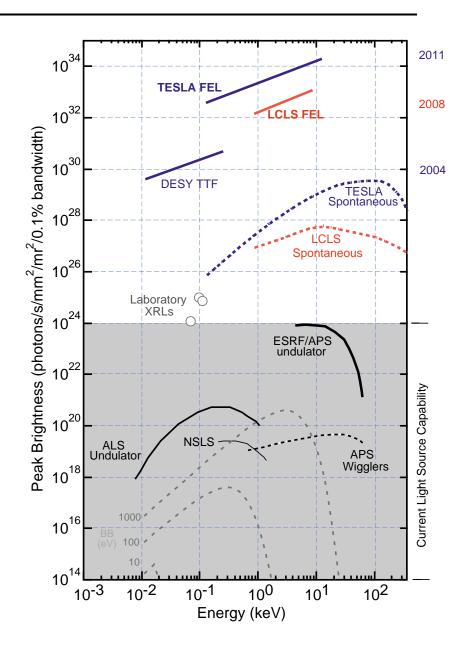
§Lawrence Livermore National Laboratory, Livermore, CA, USA

¹University of California Berkeley, CA, USA

& University of California Davis, CA, USA

²Lawrence Berkeley National Laboratory, Berkeley, CA, USA

[¶]Department of Physics, Clarendon Laboratory, Oxford University, Oxford, UK


*Department of Physics & Astronomy, University of British Columbia, Canada

^aPIIM, Université de Provence, Marseille, France

^aCentral Laser Facility, Rutherford Laboratory, Chilton, Oxfordshire UK *School of Mathematics and Physics Queen's University Belfast, Northern Ireland

Discussion is based future light sources; but, is applicable to intense short pulse x-ray sources

- Previous generations of light sources have been based on synchrotron radiation
 - Circular machines
 - High duty cycle (> MHz)
 - Tunable over wide energy ranges
 - Low number of photons per bunch
 - Long bunch duration (~ 50 ps)
- Next generation: Linac based
 - Short bunch duration (~ 100 fs)
 - Fully transversely coherent
 - Low repetition rate (~ 100 Hz)
 - Tunable
 - High peak brightness

XFELs are proposed for SLAC (LCLS) and DESY (TESLA), DESY TTF is being upgraded

 The specifications indicate that these are as much laser facilities as light sources

	TTF-II (6.0 nm)	LCLS (0.1 nm)	TESLA (0.1 nm)
mJ/pulse	0.3	2.6	3.7
Photons/pulse	9x10 ¹²	2x10 ¹²	2x10 ¹³
GW	3	26	37
Peak Brightness	2.0x10 ³⁰	1.2x10 ³³	8.7x10 ³³
Bandwidth (%)	0.6	0.3	0.1
Hz	50	100	50
Date	2004	2008	2011

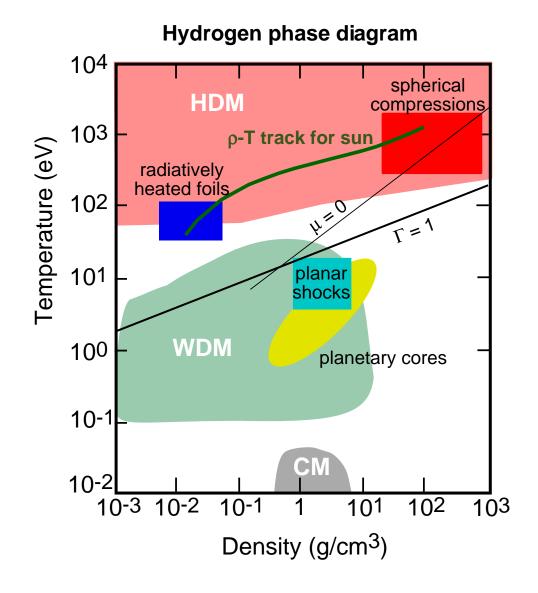
The case for short pulse x-ray based research is strong in several areas

We will present only two topics relevant to LLNL:

Creation and study of Warm Dense Matter

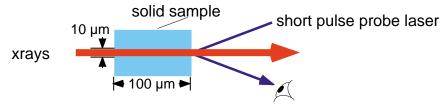
Probing Hot Dense Matter

Finite Temperature High Density Studies

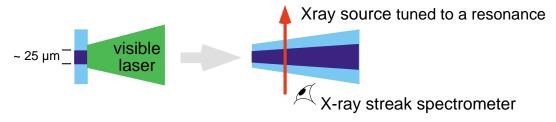

The importance of these states of matter derives from their wide occurrence

Hot Dense Matter occurs in:

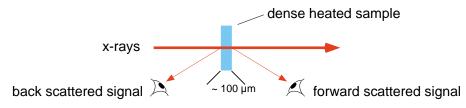
- Supernova, stellar interiors, accretion disks
- Plasma devices: laser produced plasmas, Z-pinches
- Directly driven inertial fusion plasma


Warm Dense Matter occurs in:

- Cores of large planets
- Systems that start solid and end as plasma
- X-ray driven inertial fusion implosion

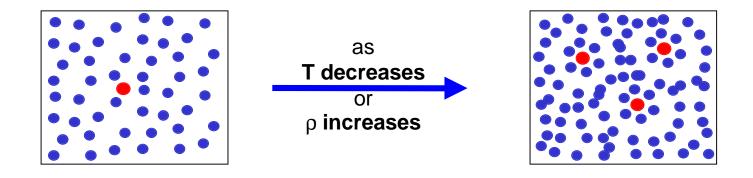


Highlight three experimental areas in the high-density finite-temperature regime


- Creating Warm Dense Matter
 - Generate ≤10 eV solid density matter
 - Measure the fundamental nature of the matter via equation of state

- Probing bound-bound transitions in Hot Dense Matter
 - · Measure kinetics process, redistribution rates, kinetic models

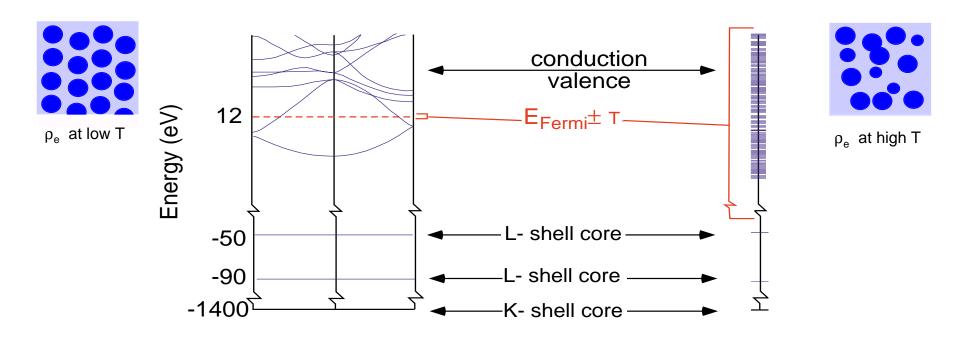
- Probing dense matter
 - Perform, e.g., scattering from solid density matter
 - Measure n_e, T_e, <Z>, f(v), and damping rates


Intense short pulse x-ray sources can create and probe high-density finite-temperature matter

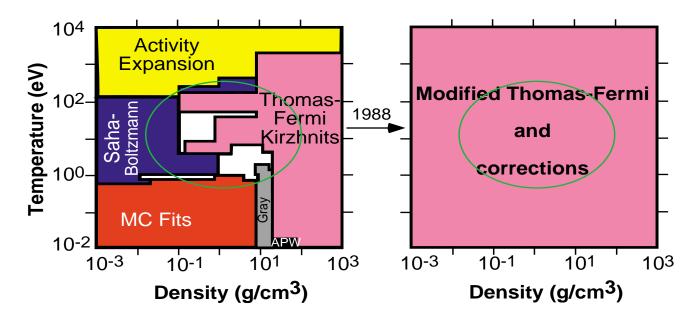
- To create Warm Dense Matter requires rapid uniform bulk heating
 - High photon numbers, high photon energy, and short pulse length ⇒ high peak brilliance
- To pump/probe Hot Dense Matter requires a fast-rising short-duration source of high energy photons
 - Pump rate must be larger than competing rates
 - No laser source has flux (laboratory x-ray lasers or otherwise)
- To measure plasma-like properties requires short pulses with signal > plasma emission
 - No existing source can probe Hot Dense Matter
 - No existing source can create Warm Dense Matter to probe
- Future FELs will be ideal as peak brilliance allows access to novel regimes
- But, we need to start soon as possible

Warm Dense Matter

From the point of view of a plasma the defining concept is *coupling*

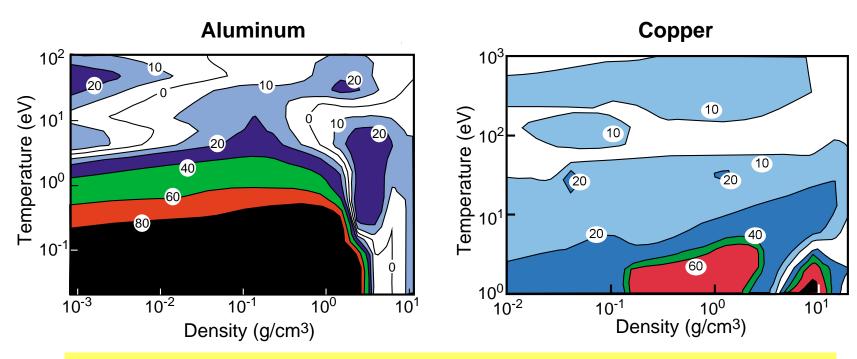

- Weakly couple plasmas are "easy"
 - The plasma can be seen as a separate point charges
 - Then the plasma is a bath in which all particles are treated as points - even particles with structure (e.g., atoms)

- But, when either ρ increases or T decreases:
 - Particle correlations become important
 - Ionization potentials are depressed
 - Energy levels shift


For condensed matter temperature relative to the Fermi energy defines WDM

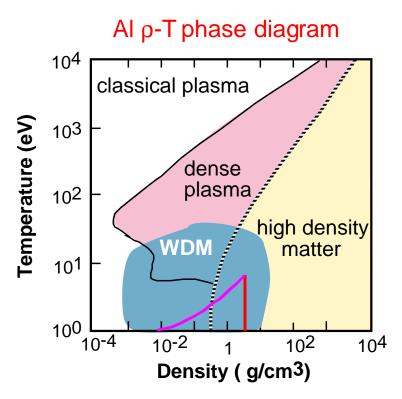
- Fermi energy, E_{Fermi}, is the maximum energy level of an ein cold condensed matter
- When T << E_{Fermi} = T_{Fermi} standard condensed matter methods work
- When T ~ T_{Fermi} one gets excitation of the core
 - Ion-e⁻ correlations change and ion-ion correlations give short and long range order

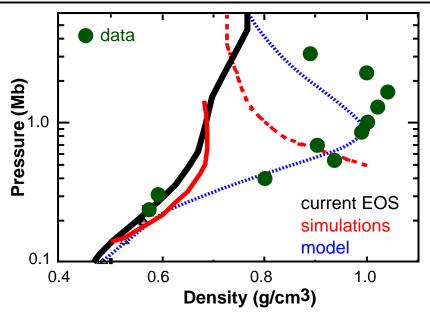
WDM is theoretically challenging as there are no small parameters \Rightarrow data is critical


- WDM is the regime where neither condensed matter (T = 0) nor plasma theoretical methods are valid
- The Equation of State (EOS) of Copper indicates the problems

- Thermodynamically consistent EOS based on numerous schemes proved impossible (attempted from 1970's)
- A single incomplete description is now employed (from 1988)

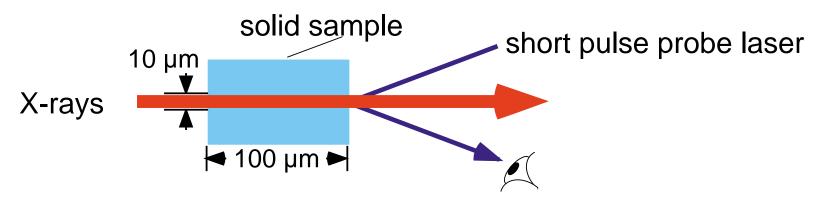
In WDM regime large errors exist even for most studied materials


Contours of % differences in pressure



- Differences > 80% in the EOS are common
- Measurements are essential for guidance
- Where data exists the models agree!
 - Along principal Hugoniot: ρ-T-P response curve defined by single shocks

In WDM regime *data* leads to new results - short pulse x-ray sources will be critical

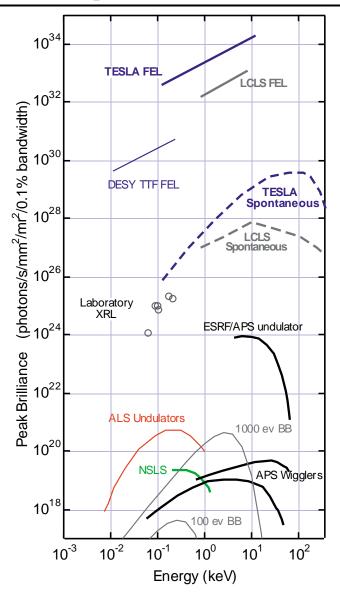

 Experimental data for D₂ along the Hugoniot shows theories are deficient

- An intense short pulse x-ray source can heat matter rapidly and uniformly:
 - creating isochores (constant ρ) and
 - release isentropes (constant entropy)

Intense short pulse x-ray sources can create WDM in a straightforward manner

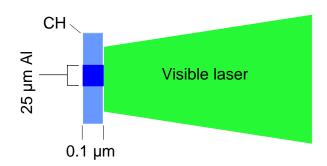
- •For a 10x10x100 µm thick sample of Al
 - Ensure sample uniformity by using only 66% of beam energy
 - Equating absorbed energy to total kinetic and ionization energy

$$\frac{E}{V} = \frac{3}{2}n_e T_e + \sum_i n_i I_p^i \text{ where } I_p^i = \text{ ionization potential of stage } i - 1$$

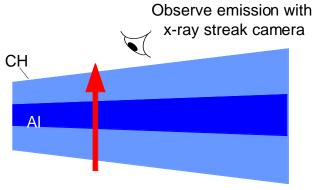

- Find 10 eV at solid density with $n_e = 2x10^{22}$ cm⁻³ and <Z> \sim 0.3
- State of material on release can be measured with a short pulse laser
- Material rapidly and uniformly heated releases isentropically

Hot Dense Matter

(Plasmas)

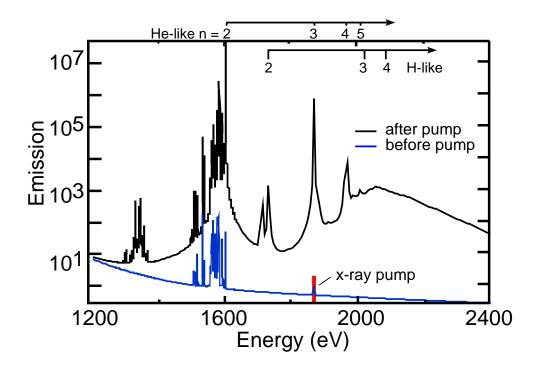

For Hot Dense Matter intense short pulse x-ray source will generate unique results

- For Hot Dense Matter the plasma collision rates and spontaneous decay rates are large
- To effectively move population,
 pump rate, R, must be > decay rate, A
 => R > A
- For I = 10^{14} W/cm² R/A ~ 10^{-4} g_U/g_L λ^4
 - FELs attain needed excitation strength $\lambda \sim 10 \text{ Å}$ \rightarrow R/A > 1
 - All Laboratory x-ray lasers are *insufficient* $\lambda > 100 \text{ Å} \implies R/A << 1$



An X-FEL or XUV-FEL can photopump a transition: provides critical tests of plasma processes

- Experiment
 - t = 0 laser irradiates Al dot



• t = 100 ps x-rays irradiate plasma

X-rays pump tuned to 1869 eV

Simulation

Line intensity, line position, and line shape *may* be effected by strong coupling

Simple form for emission illustrates the observable aspects

$$I(\omega) = N_{UL} A_{UL} \hbar \omega_{UL} \phi(\omega)$$

$$level \ populations \qquad line \ shape$$

$$\phi(\omega) = \int d\varepsilon P(\varepsilon) J(\omega, \varepsilon) \qquad \text{where } P(\varepsilon) \text{ is the ion microfield}$$

$$J(\omega, \varepsilon) \sim \frac{Im}{\pi} (\omega_{UL}(\varepsilon) + \delta(\omega) + i\gamma(\omega))^{-1}$$

- Investigate $\phi(\omega)$ and $\gamma(\omega)$ to look at effects on shape
- Investigate $\delta(\omega)$ to look at line position (shift)
- Investigate kinetics for effects on populations, n_i

Using an X- or XUV-FEL to pump within a line transition is fundamentally important

 Measuring redistribution within a Stark-broadened boundbound profile

- Assumption of complete redistribution within a profile can be invalid
 - ion field fluctuations
 - inelastic collisions

 Measuring the detailed redistribution of population by pumping within a transition can indicate relative plasma rate process

Ultimate test is the study of the radiation redistribution function $R(\omega_1,\omega_2)$

• I is the power spectrum of the radiation emitted at $\omega_{\rm S}$ by a system pumped at ω_{l}

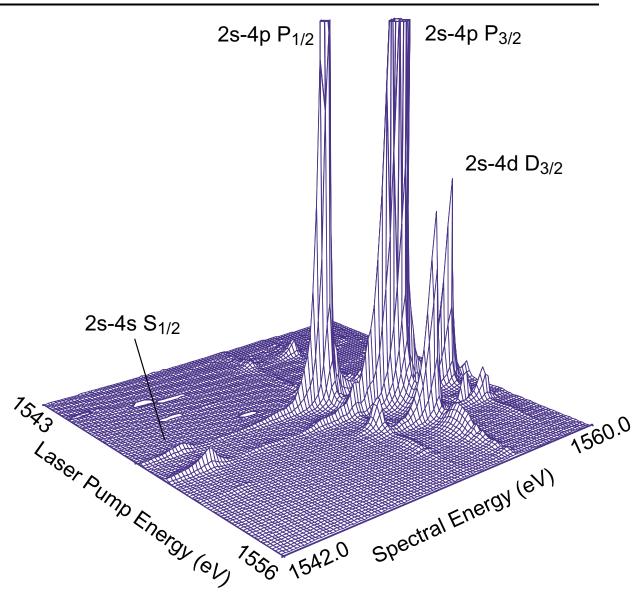
$$I(\omega_{\rm S},\omega_{\rm L}) \propto \lim_{\eta \to 0} {\rm Im} \sum_{i,f} p_i \Big(\langle \langle {\bf V}_{\rm S} | {\bf G}_W({\rm i}\eta) | {\bf V}_{\rm L} {\boldsymbol \rho}_{\rm o} \rangle \rangle \Big)_{i,f}$$

$$V_{\rm S} = \text{interaction for emission}$$

$$V_{\rm L} = \text{interaction with pump}$$

$$W_{\rm S} = {\rm interaction}$$

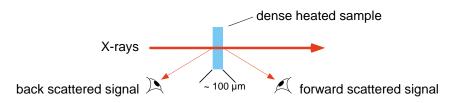
$$W_{\rm L} = {\rm intera$$

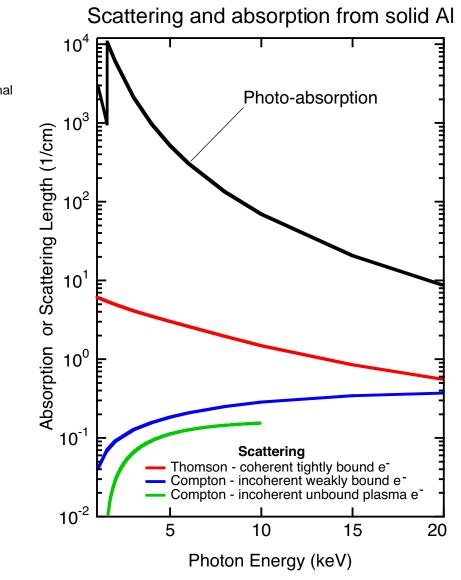

• $R(\omega_1, \omega_S)$ is the redistribution function

$$R(\omega_{\rm L}, \omega_{\rm S}) = \frac{I(\omega_{\rm L}, \omega_{\rm S})}{\int \int I(\omega_{\rm L}, \omega_{\rm S}) d\omega_{\rm L} d\omega_{\rm S}}$$

Investigate the redistribution using the X- or XUV-FEL

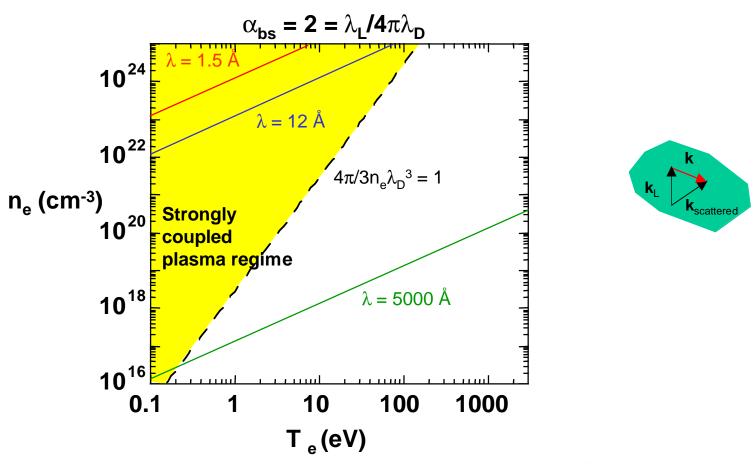
With bandwidth control and tuning, can pump within line to provide plasma rate data


- Example: pumping Li-like Iron 1s²2l - 1s²4l
- Collision rates and plasma field fluctuations can be measured
- Bandwidth of ~10⁻⁴ is easily obtained by use of a crystal


Probing

(only one example)

X- or XUV-FEL can be used to probe near solid density *finite* temperature matter



- Scattering from free electrons provides a measure of the T_e, n_e, f(v), and plasma damping
 - ⇒ structure alone not sufficient for plasma-like matter
- Due to absorption, refraction and reflection neither visible nor laboratory x-ray lasers can probe high density
 - ⇒ no high density data
- X-FEL and XUV-FEL scattering signals will be well above noise for both Warm and Hot Dense Matter

Free electrons x-ray scattering accesses dense, strongly coupled plasma regime

• The collective regime is probed for $\alpha = \lambda_L/4\pi\lambda_D \sin(\theta/2) \ge 1$

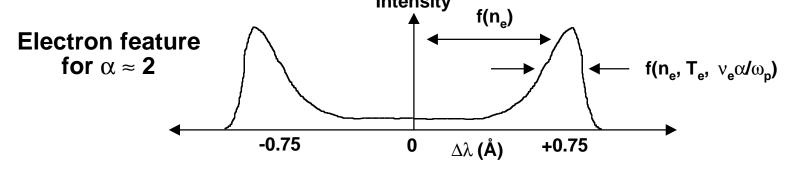
• For $\alpha \approx 2$: n_e , T_e , collisionality v_e and plasma flow data available from electron feature

The XFEL provides a scattering probe of ≥ solid density *finite* temperature matter

• X-ray laser output: at 12 Å ~ 10¹² photons

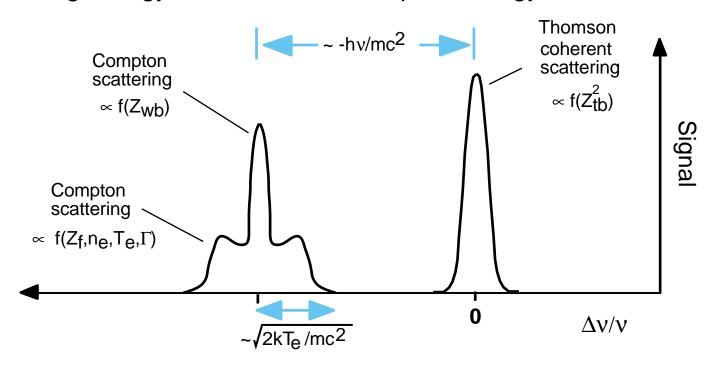
• Plasma probed: $n_e = 4x10^{23} \text{ cm}^{-3}, T_e = 25 \text{ eV}, L = 10^{-2} \text{ cm}$

• Scattering parameter: $\alpha = \lambda/4\pi\lambda_D = 12 \text{ Å} / (4\pi \times 0.6 \text{ Å}) \approx 2$


• Scattered fraction: $\sigma n_e L = 7x10^{-25}/2(1+\alpha^2) \times 4x10^{23} \times .01 \approx 3x10^{-4}$

• Collected fraction: $\Omega/4\pi$ x efficiency ~ $4x10^{-4}$ x10% = $4x10^{-5}$

• # photons collected: $10^{12} \times 4x10^{-5} \times 3x10^{-4} \approx 10^{4}$


• Signal / Planckian: $> 10^8$ for 300 µm probe size at $T_e = 25$ eV

• $\Delta\lambda/\lambda$ required: $\Delta\lambda/\lambda \sim \sqrt{(n_e/n_c)/\alpha^2} = \sqrt{(4x10^{23}/4x10^{28})/4} \approx .006$ Intensity

Scattering of an FEL will provide data on free, tightly-, and weakly-bound electrons

 Weakly-bound (wb) and tightly-bound (tb) electrons depend on their binding energy relative to the Compton energy shift

- For a 25 eV, 4x10²³ cm⁻³ plasma the X-FEL produces10⁴ photons from the free electron scattering
- Can obtain temperatures, densities, mean ionization, velocity distribution from the scattering signal

Summary of **Technical** Program

Goals for Warm Dense Matter studies: measure EOS and plasma properties

- Equation of State measurements illuminate the microscopic understanding of matter
 - The state of ionization is extremely complex when the plasma is correlated with the ionic structure
- Other properties of the system depend on the same theoretical formulations
 - For example, conductivity and opacity

Goals for Hot Dense Matter: study kinetics, line shapes, and plasma formation

- Since the advent of laboratory plasmas in the Hot Dense Matter regime quantitative data has been very scarce
 - The rapid evolution of high T_e and n_e matter requires a shortduration, high-intensity, and high-energy probe
- Short pulse intense x-ray sources will permit measurements of:
 - Kinetics behavior test rates, model construction
 - Plasma coupling measure directly S(k,ω), the dynamic structure factor
 - Line transition formation measure line shapes, shifts, ionization depression
 - High energy density formation measure matter in the densest regions

Plan for WDM & Plasma-related Research

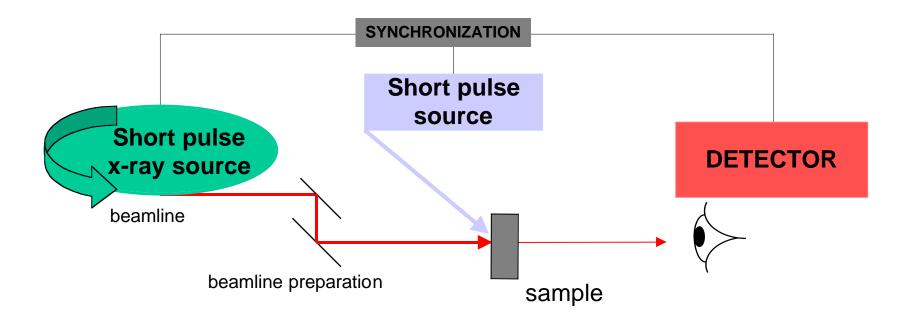
At recent Workshop on Warm Dense Matter a plan became clear for LLNL relevant interests

- Goal of the workshop was to develop an understanding of where the various capabilities (possibilities) fit in the picture
- Reports given on current and future experiments:
 - Light Sources
 - Ion Beam Facilities
 - Short Pulse Lasers Capabilities (SPL)
 - High Explosives Facilities
 - Gas Gun Facilities
 - Diamond Anvil Cell Capabilities (DAC)
- Reports given on current and future theoretical efforts

An overview of the conclusions

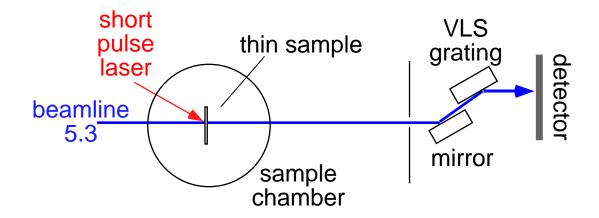
- The classic "high pressure" capabilities of DAC and Gas Guns do not make contact with the WDM regime
- The SPL capabilities have not produced any substantive results in the WDM regime
 - Over-promised
 - Under-performed
 - Project dissipated
- The rigorous requirements, of accuracy and volume of data, indicate large-scale user facilities will be essential
- The difficulties of developing techniques for these regimes indicate that SPL efforts should be intelligently pursued

The use of SPLs to develop techniques for user facility applications is important

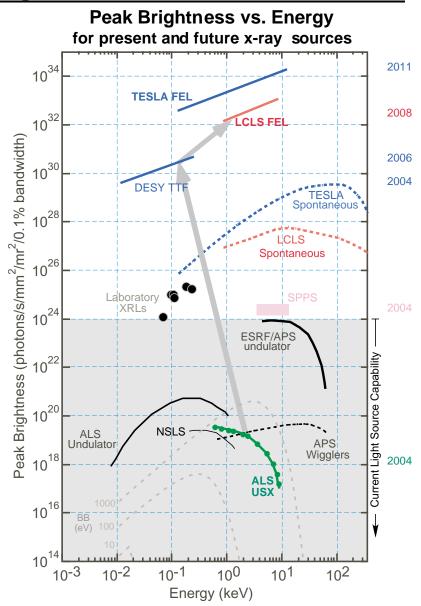

- The first steps would be to devise relevant experiments at SPLs
 - Need to be concerned that the approach translates to the user facility

- Next, transfer the techniques to the light sources of the future:
 - Requires SPLs to be coupled to light source
 - Requires a short pulse intense x-ray source
 - Requires diagnostic development
 - OBTW: Requires investment from "us"

Final stage will be the generation of data on a large scale


All WDM and Plasma-Related research have similar requirements

- One short pulse source to heat the sample to create the finite-temperature dense matter
- Another short pulse source to perform measurements
- Detectors capable of appropriate time resolution
- Synchronization of the ensemble


Plan can be illustrated by example: WDM experiment currently at ALS

- X-ray absorption of WDM sample
- Much preliminary work has been performed
 - Short pulse laser (150 fs) warms the sample
 - ALS probes warmed sample in the 100-200 eV spectral range
 - Time resolution is limited by ALS time structure
 - Or, if using a streak camera, by x-ray photon limitations

The path is defined by proposed facilities and each requires development

- "Move" experiment to ALS short pulse x-ray source
 - Provides time resolution of ~ 200 fs
- Move the experiment to the DESY TTF-II upgrade
 - Provides high peak brightness for potential heating and/or 200 fs probing
- Move the experiment to the LCLS X-FEL
 - Provides harder x-ray capability at high peak brightness
 - 200 fs probing and x-ray heating

Conclusions

- There is a need for data in the WDM and Plasmarelated regime that can only be obtained at large scale facilities
- There is an understanding of how to develop a working series of experiments
 - Development on SPLs
 - SPLs coupled to short pulse x-ray light sources
- Proposed short pulse x-ray sources provide the path
 - ALS ultrafast "slicing" x-ray source
 - SPPS at SLAC
 - TTF-II upgrade at DESY
 - LCLS at SLAC and TESLA at DESY

Warm Dense Matter Conference and **Experimental Planning Workshop at DESY**

- Warm Dense Matter Conference
 - JUNE 3-5, 2002

- FEL Experiments Planning Workshop
 JUNE 6-7, 2002
 - Explore the possibilities for warm dense matter research at the Tesla Test Facility Phase II (TTF-II)
 - Goal is to develop a proposal for a beamline
 - Contact: T. Tschentscher or R. Lee